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1 Abstract

The proliferation of false information, such as fake news, political deception, and online rumors,
has emerged as a critical societal issue, necessitating automated fact-checking methods to mitigate
their negative impact. Existing studies primarily follow a three-step pipeline: document retrieval,
evidence sentence selection, and claim verification, with significant attention given to retrieval and
multi-evidence reasoning. However, current approaches often suffer from noise propagation and
oversmoothing issues in graph neural networks, which undermine their ability to capture diverse
perspectives from evidence. To address these challenges, we propose a novel fact verification frame-
work, FC-VIB, grounded in the variational information bottleneck (VIB) theory. FC-VIB introduces
an adaptive evidence graph structure learning method that controls the flow of information into the
reasoning model, balancing prediction and compression to filter task-irrelevant information. The
framework includes four stages: (1) encoding claims and evidence using visual and text encoders
to initialize node features; (2) learning the evidence graph structure adaptively to construct the
IB-Graph (GIB); (3) utilizing a graph neural network to obtain the evidence graph representation
distribution; and (4) sampling from the learned distribution via the reparameterization trick for
claim verification. The model is trained with supervised classification and KL-divergence loss for
the IB objective. Extensive experiments on a public text-based fact verification benchmark and
two multimodal benchmarks demonstrate that FC-VIB effectively constructs high-quality evidence
graphs, achieving superior performance compared to state-of-the-art baselines.

2 Method

Following previous research, FC-VIB first constructs an evidence graph using retrieved evidence
D = {e1t , ..., ent , e1i , ..., e

m
i } for claim c. Building on the previously introduced graph information

bottleneck theory, we employ a generator to produce the optimized GInfo−BN . We assume that
ZInfo−BN follows a normal distribution and train the model to learn the mean and variance of
this distribution based on GInfo−BN . Using the reparameterization trick, we sample ZInfo−BN
from the learned normal distribution. Subsequently, a classifier is utilized to predict the claim label
Y .

Initial Node Representations The node representations are initialized by concatenating the
features of claim and evidence. Specifically, we leverage pre-trained text encoders (DeBERTa) to
extract features from claims and textual evidence, while utilizing pre-trained image encoders (ViT)
to capture features from image evidence.
For the claim and evidence, we get the token hidden states and obtain the features from the

representation of the first token (“[CLS]”):

zc = TextEncoder(c) (1)

z
ejt
= TextEncoder(e

j
t ), e

j
t ∈ {e1t , ..., ent } (2)

z
eji
= ImageEncoder(e

j
i ), e

j
i ∈ {e1i , ..., e

m
i } (3)

(4)

where zc is the feature of claim. z
ejt

and z
eji

are the features of text evidence and image evidence

respectively.
Following previous works, we concatenate the features of the claim and the evidence as the initial

node features.

xj = zc ⊕ z
ejt
, e

j
t ∈ {e1t , ..., ent } (5)

xj+n = zc ⊕ z
eji
, e

j
i ∈ {e1i , ..., e

m
i } (6)

where xj represents the feature of the j-th node in the evidence graph G.

Info-Bottleneck Graph Generator We propose an Info-Bottleneck graph generator to con-
struct the Info-Bottleneck graph GInfo−BN for the input graph G. Based on the assumption that
structural components may contain nuisance information, the procedure for generating the structure
is as follows.
Each potential edge is represented as an independent Bernoulli random variable, with its proba-

bility determined by the learned attention weights π:

AInfo−BN =
⋃

u,v∈V
{au,v ∼ Ber(πu,v)} (7)

For every node pair, the edge sampling probability π is optimized alongside the graph represen-
tation learning process. πu,v reflects the task-specific relevance of the edge (u, v), where a lower
value of πu,v suggests that the edge is more likely to be noisy and should receive a lower weight or
potentially be eliminated.
For a pair of nodes (u, v), the edge sampling probability πu,v is calculated by:

Z(u) = f(XInfo−BN (u)), (8)

πu,v = sigmoid(Z(u)Z(v)T ) (9)

where f(·) denotes a neural network and we use a two-layer MLP in this work. A challenge arises
because AInfo-Bottleneck is not differentiable with respect to π due to the discrete nature of the

Bernoulli distribution. To address this, we adopt the concrete relaxation of the Bernoulli distribu-
tion to enable the optimization of π:

Ber(πu,v) ≈ sigmoid

(
1

t

(
log

πu,v
1− πu,v

+ log
ϵ

1− ϵ

))
(10)

where ϵ ∼ Uniform(0, 1) and t ∈ R+ is the temperature for the concrete distribution. With the
concrete relaxation applied, the binary variables au,v, originally sampled from a Bernoulli distribu-
tion, are reparameterized as a deterministic function of πu,v and a noise term ϵ.
After applying the concrete relaxation, the resulting graph becomes a weighted fully connected

graph, leading to high computational costs. To mitigate this, we construct a symmetric sparse
adjacency matrix by masking out entries with values below a non-negative threshold a0.

Info-Bottleneck Graph Representation Distribution Learning To compute the com-
pression term I(ZInfo-Bottleneck;G), we assume both the prior r(ZInfo-Bottleneck) and the pos-
terior p(ZInfo-Bottleneck|G) follow parametric Gaussian distributions, enabling an analytical cal-
culation of the Kullback-Leibler (KL) divergence:

r(ZInfo−BN ) = N (µ0,Σ0) (11)

p(ZInfo−BN |G) = N
(
f
µ
ϕ (GInfo−BN , fΣϕ (GInfo−BN )

)
(12)

where µ ∈ RK and Σ ∈ RK×K is the mean vector and the diagonal co-variance matrix of
ZInfo−BN encoded by fϕ(GInfo−BN ).
The dimensionality of ZInfo-Bottleneck, denoted as K, defines the size of the information bot-

tleneck. We parameterize fϕ(GInfo-Bottleneck) using a graph neural network (GNN) with param-

eters ϕ, where the GNN outputs a 2K-dimensional vector comprising f
µ
ϕ (GInfo-Bottleneck) and

fΣϕ (GInfo-Bottleneck), representing the mean and variance, respectively:

∀u ∈ V, ZInfo−BN (u) = GNN(X,AInfo−BN ) (13)(
f
µ
ϕ (GInfo−BN ), fΣϕ (GInfo−BN )

)
= Pooling({ZInfo−BN (u),∀u ∈ V }) (14)

where the first K-dimension outputs encode µ and the remaining K-dimension outputs encode Σ (we
use a softplus transform for fΣϕ (GInfo−BN ) to ensure the non-negativity). We treat r(ZInfo−BN )

as a fixed d-dimensional spherical Gaussian r(ZInfo−BN ) = N (ZInfo−BN |0, I).

Info-Bottleneck Graph Representation Representation Sampler To compute
ZInfo-Bottleneck, we apply the reparameterization trick, which allows for efficient gradient esti-
mation:

ZInfo−BN = f
µ
ϕ (GInfo−BN ) + fΣϕ (GInfo−BN )⊙ ϵ (15)

where ϵ ∈ N(0, I) is an independent Gaussian noise and ⊙ denotes the element-wise product. By
applying the reparameterization trick, the randomness is introduced through ϵ, ensuring that it
does not interfere with backpropagation. For the first term I(ZInfo-Bottleneck, Y ), the distribution
qθ(Y |ZInfo-Bottleneck) represents the label distribution of the learned graph GInfo-Bottleneck. We
model this distribution using a multi-layer MLP classifier with parameters θ, where ZInfo-Bottleneck
serves as the input, and the network outputs the predicted label.

Y = MLP(ZInfo−BN ) (16)

Training Objective. Using gradient descent and backpropagation techniques, we can efficiently
compute the upper bounds on the training data samples. The total loss function is given by:

L = LCE(ZInfo−BN , Y ) + βDKL(p(ZInfo−BN |G)||r(ZInfo−BN )) (17)

where LCE is the cross-entropy loss and DKL(·||·) is the KL divergence.

3 Expriment

To validate the effectiveness of our method, we systematically compared it with multiple widely-
adopted fake news detection techniques. We conduct experiments on three public benchmark
datasets, i.e., FEVER, FACTIFY and MOCHEG. Compared to baseline models, FC-VIB achieves
the best performance in most test scenarios. This demonstrates the effectiveness of FC-VIB in
graph-based reasoning models. For comprehensive experimental findings, please refer to our paper.

4 Conclusion

In this work, we propose a fact verification method based on the Variational Information Bottleneck
(VIB) theory. Our approach effectively controls the flow of evidence information into the graph rea-
soning model, striking a balance between prediction and compression. This balance helps limit the
retention of task-irrelevant information within the graph reasoning model. The results demonstrate
the effectiveness of this framework, as our final pipeline achieves significant improvements. In the
future, we aim to further explore evidence interaction mechanisms and enhance the interpretability
of fact verification models.
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